f(t, x, y) → f(g(x, y), x, s(y))
g(s(x), 0) → t
g(s(x), s(y)) → g(x, y)
↳ QTRS
↳ AAECC Innermost
f(t, x, y) → f(g(x, y), x, s(y))
g(s(x), 0) → t
g(s(x), s(y)) → g(x, y)
g(s(x), 0) → t
g(s(x), s(y)) → g(x, y)
f(t, x, y) → f(g(x, y), x, s(y))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
f(t, x, y) → f(g(x, y), x, s(y))
g(s(x), 0) → t
g(s(x), s(y)) → g(x, y)
f(t, x0, x1)
g(s(x0), 0)
g(s(x0), s(x1))
F(t, x, y) → G(x, y)
G(s(x), s(y)) → G(x, y)
F(t, x, y) → F(g(x, y), x, s(y))
f(t, x, y) → f(g(x, y), x, s(y))
g(s(x), 0) → t
g(s(x), s(y)) → g(x, y)
f(t, x0, x1)
g(s(x0), 0)
g(s(x0), s(x1))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
F(t, x, y) → G(x, y)
G(s(x), s(y)) → G(x, y)
F(t, x, y) → F(g(x, y), x, s(y))
f(t, x, y) → f(g(x, y), x, s(y))
g(s(x), 0) → t
g(s(x), s(y)) → g(x, y)
f(t, x0, x1)
g(s(x0), 0)
g(s(x0), s(x1))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
G(s(x), s(y)) → G(x, y)
f(t, x, y) → f(g(x, y), x, s(y))
g(s(x), 0) → t
g(s(x), s(y)) → g(x, y)
f(t, x0, x1)
g(s(x0), 0)
g(s(x0), s(x1))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
G(s(x), s(y)) → G(x, y)
f(t, x0, x1)
g(s(x0), 0)
g(s(x0), s(x1))
f(t, x0, x1)
g(s(x0), 0)
g(s(x0), s(x1))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
G(s(x), s(y)) → G(x, y)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
F(t, x, y) → F(g(x, y), x, s(y))
f(t, x, y) → f(g(x, y), x, s(y))
g(s(x), 0) → t
g(s(x), s(y)) → g(x, y)
f(t, x0, x1)
g(s(x0), 0)
g(s(x0), s(x1))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
F(t, x, y) → F(g(x, y), x, s(y))
g(s(x), 0) → t
g(s(x), s(y)) → g(x, y)
f(t, x0, x1)
g(s(x0), 0)
g(s(x0), s(x1))
f(t, x0, x1)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ NonInfProof
F(t, x, y) → F(g(x, y), x, s(y))
g(s(x), 0) → t
g(s(x), s(y)) → g(x, y)
g(s(x0), 0)
g(s(x0), s(x1))
(1) (F(g(x0, x1), x0, s(x1))=F(t, x2, x3) ⇒ F(t, x2, x3)≥F(g(x2, x3), x2, s(x3)))
(2) (g(x0, x1)=t ⇒ F(t, x0, s(x1))≥F(g(x0, s(x1)), x0, s(s(x1))))
(3) (t=t ⇒ F(t, s(x4), s(0))≥F(g(s(x4), s(0)), s(x4), s(s(0))))
(4) (g(x5, x6)=t∧(g(x5, x6)=t ⇒ F(t, x5, s(x6))≥F(g(x5, s(x6)), x5, s(s(x6)))) ⇒ F(t, s(x5), s(s(x6)))≥F(g(s(x5), s(s(x6))), s(x5), s(s(s(x6)))))
(5) (F(t, s(x4), s(0))≥F(g(s(x4), s(0)), s(x4), s(s(0))))
(6) (F(t, x5, s(x6))≥F(g(x5, s(x6)), x5, s(s(x6))) ⇒ F(t, s(x5), s(s(x6)))≥F(g(s(x5), s(s(x6))), s(x5), s(s(s(x6)))))
POL(0) = 0
POL(F(x1, x2, x3)) = -1 - x1 + x2 - x3
POL(c) = -1
POL(g(x1, x2)) = 0
POL(s(x1)) = 1 + x1
POL(t) = 0
The following pairs are in Pbound:
F(t, x, y) → F(g(x, y), x, s(y))
The following rules are usable:
F(t, x, y) → F(g(x, y), x, s(y))
t → g(s(x), 0)
g(x, y) → g(s(x), s(y))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ NonInfProof
↳ QDP
↳ PisEmptyProof
g(s(x), 0) → t
g(s(x), s(y)) → g(x, y)
g(s(x0), 0)
g(s(x0), s(x1))